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Non-atomistic models such as k.p are often used to characterize the electronic structures
of quantum dots.  However, such jellium-like models are fundamentally not well suited for the
atomistic representation of nano-scale features such as interfaces and disorder.   A realistic atomic
simulation, however, is computationally taxing, since it must include millions of atoms.  For
example, the modeling of a horizontal array of four self-assembled InAs quantum dots of 30 nm
diameter and 5 nm height embedded in GaAs of buffer width 5 nm and separated by 20 nm
requires a simulation domain encompassing 5.2 million atoms.  The large problem size of these
applications, then, necessitates computation on large parallel computers.

In this work, we describe an extension of the NEMO 1-D device simulator developed at
Raytheon/TI to 3D in order to model quantum dot structures on high performance commodity
clusters (Beowulfs).  Our simulation employs a nearest-neighbor tight-binding model with a 20
orbital basis, consisting of s, p, and d orbitals, associated with each atomic lattice site.  The
coupling energies between these orbitals are computed by using a genetic algorithm package to
determine a best fit to experimentally measurable bulk properties such as bandgaps, effective
masses and strain-induced shifts.  This coupling, represented by a 20×20 matrix, is dependent on
the bond length and, in strained systems, is different for each nearest neighbor cation-anion pair.

Computation of the electronic structure of a typical system involves the diagonalization
of a sparse Hamiltonian of order ~108 though a customized parallel Lanczos solver.  Data are
partitioned such that each processor holds information relevant only to the set of atoms associated
with that processor.  Furthermore, atoms are mapped to processors in such a way as to preserve
their geometric connectivity, so that our nearest-neighbor model results only in nearest-neighbor
communication among processors.  This scheme allows for a simple, efficient 1D chain network
topology in which all communication is synchronized right to left, then left to right.  Data
structures specific to zincblende are used to minimize storage requirements by eliminating
redundancy due to symmetry, so that on a 64 processor system with 1 GB/processor,
nanostructures consisting of up to 15 million atoms can be modeled before there is significant
swapping.  Even larger systems can be simulated by recomputing the Hamiltonian on the fly,
although at a cost of a factor of 2 to 4 in execution time depending on platform.  Scaling results
illustrating performance as a function of number of processors and problem size will be
presented.

Roughly a third of the CPU time is spent on computing the mechanical strain on which
the electronic calculation depends.   The interatomic distances are determined by minimizing the
mechanical strain within a nearest neighbor valence force model using a parallelized conjugate
gradient based method.  Both fixed and periodic boundary conditions are allowed, and in the case
of periodic boundary conditions the strain energy is also minimized with respect to the overall
periodicity.  The resulting lattice constant of InxGa1-xAs alloys shows good agreement with the
VCA lattice constant.

An important advantage of the atomistic model is in the characterization of disorder.  We
will present results showing that even in the absence of carrier-carrier or carrier-phonon
scattering or dot size distributions, a spread in transition energy of several meV can still be
expected simply due to the variations in the random distribution of cations.  Our work also
demonstrates that simple hard-wall boundary conditions can strongly affect the converged
eigenenergies if the surrounding buffer is sufficiently thin so that care must be taken to ensure
proper convergence.


